Telegram Group & Telegram Channel
Что такое бутстреп (bootstrap) в контексте Data Science?

Это метод для оценки стандартных отклонений и нахождения доверительных интервалов статистических функционалов. Он основан на многократной выборке с возвращением из исходного набора данных. Так создаются «псевдовыборки».

Допустим, у нас есть выборка из неизвестного распределения: [7,2,4]. Мы хотим построить доверительный интервал для среднего.

▪️Начнём с того, что по имеющейся выборке построим много псевдовыборок. Для этого три раза подряд берём случайный элемент из выборки, допуская повторения. Повторяя эту процедуру много раз, мы получим много новых псевдовыборок такого же размера.
▪️У каждой из получившихся псевдовыборок посчитаем среднее. Так мы получим n чисел (по количеству псевдовыборок). Мы предполагаем, что каждое такое число что-то говорит нам об истинном математическом ожидании изначальной выборки.
▪️Мы упорядочиваем эти n чисел по возрастанию, и берём 0.95 интервал из середины. То есть выкидываем 2.5% самых маленьких чисел и 2.5% самых больших чисел. Из оставшихся чисел берём самое маленькое и самое большое — это будут границы нашего доверительного интервала для среднего.

#анализ_данных
#статистика



tg-me.com/ds_interview_lib/288
Create:
Last Update:

Что такое бутстреп (bootstrap) в контексте Data Science?

Это метод для оценки стандартных отклонений и нахождения доверительных интервалов статистических функционалов. Он основан на многократной выборке с возвращением из исходного набора данных. Так создаются «псевдовыборки».

Допустим, у нас есть выборка из неизвестного распределения: [7,2,4]. Мы хотим построить доверительный интервал для среднего.

▪️Начнём с того, что по имеющейся выборке построим много псевдовыборок. Для этого три раза подряд берём случайный элемент из выборки, допуская повторения. Повторяя эту процедуру много раз, мы получим много новых псевдовыборок такого же размера.
▪️У каждой из получившихся псевдовыборок посчитаем среднее. Так мы получим n чисел (по количеству псевдовыборок). Мы предполагаем, что каждое такое число что-то говорит нам об истинном математическом ожидании изначальной выборки.
▪️Мы упорядочиваем эти n чисел по возрастанию, и берём 0.95 интервал из середины. То есть выкидываем 2.5% самых маленьких чисел и 2.5% самых больших чисел. Из оставшихся чисел берём самое маленькое и самое большое — это будут границы нашего доверительного интервала для среднего.

#анализ_данных
#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/288

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA